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.- . INTRODUC'CION

In thie work is carried out a theoretical investigatibn of the problem
of the acoustical radiation of oacillaling bodies in a’ compreesible fluid

C for the most general case of haraonic oocillation of a solid and deformable .
: . body. S

3 - .. During the oscillation of the eolid bedy, the hydrodynamic forces acting BENTS
T o upon 1t may be divided into inertial and damping forcee. S

. The frertial forces are expressed linearly through acceieration. In
e : determiring the law of motion of the 28cillating body, the coefficients of
. : the inertial forces ecting on the beiy play the part of edditional masses,
of moments of inertia, etc. Hence the coefficients of the irsrtial forces
may be callad ccnnected masses, this deing a generalizaticn of the exicting
concept of a connected mass for an infinite and incampressible fiuid.

The propertier of symmetry of connected mzeses, dccurring in incompreseible
flulds, remain valid aleo in the examined caece. The nuzerical valuee of the
goneralized connectod masses are related.io the frequency of oscillation.

The damping forceas accounting for continuoug expenditure of snergy
on the formatic.. of acoustical waves are linearly related to the velocities.
The sam¢ properties of symetry hold true for the coefficients of dsuping
as for the generalization of the connected magses. On the baeis of the
formuks$ obtained for the generalized conrected massca-and coefficients of B
dampirz, accurate and apyroxiuate calculations way be made for several con- ) ) . -
vrate oases.
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7.7 BASIC EQUATIONS

A body oaoiuating in a fluid produces around: 11‘.591! a periodical
compreseion and vactum in the fluid and, hence, leade to the formation
of accustical vaves.

. The gensral case of the problem of acoustical radiation of a bo&y
of arbitrary form producing mmall oscillations in an ideal conpressidle
£luid can be redusced to the determination of the potential of velocities
& {x,7,2,t) fulfilling the conditions. On the surface of the body 8
the stresmline condition

#owmy, oo

obf-aine, whare M ie the applied point of the surface S, and v the normal
component of velocity of any point on the suriace 8, Vs nhaﬂ also oon-
sider the normal to the surface S 10 be directed into the liquid. The
funodion v, 18 related to the forward and angular velocities and to the
velocity of deformation of the body. We have:

VoM, 1) = V:p +(ﬂxr,)h+Vp=nV+(r.Xn).ﬂ.+nV7,
th‘ V'UIQx+Ua_ey+U’——)

16 the vector of the velocity of the origin of the omaimtes-ﬂ- th&’y* .,
18 the veotor of the instantemeous angular velooity; v8 ie tho velooity of
derormation of the cscillating body at the point M; ey, ey, &y and n ure

ningle vectors of the axes of the coordinates azd normale to the surfrca

8, and ‘v, = OM 10 the radius vector of point M

* In the total mass of fluid the potential of velocitiee § M1filla
the wave equation: ;

23 .28, ; | 9t SR ot
ar Tt 5 1 LR L3

vhere S is the velncity of sound determinod ty ths pressure p and the
density e from the Tormula:

=V (58), )
ol e Je

In addition to these conditioms, the potential of velocitiea &
satiefies at infinity the principle of radiation in that the radiated
acountical waves diverges in all dirsctiona from the oscillating vody,
-4 6., at large distances from the body, radiated waves develop into
diverging aphsrical waves. ‘

Por all further cases lgt uc examine a nase of simple harmonic
oscillations of a body resulting from a freguency k

LA P : B ‘
V=va‘k',.0 cwe ‘“,Vav_’c OktUm,‘umclkt(m.‘f‘;‘,,_,‘).(j..ﬂ
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"'Eape, and latér in compléx exprosions containing the multiple e‘h(i ,V;I)
it 13 necessary to examine only the real part. Y

Comeidering the disturbed oscillating motion of the l1quid as oonstant,
let ua assume thet

§ (":ya 2;*) “Pp (I.j,a)c (At (1.6)

To determine the function g (x,7,2) ve have the conditione

* ’ -
‘% _35_?+j;p+v paﬂ'bcyanJS(V k/¢) (1.7)

%g.-.-. ny t(raXn)wsnvg enS’;

lim R {3 o (Praxdpuiza)
"R"'@ +av’9) o(R Aty -0-2)' e (1.9)

The last of the above conditions rermesenta the mthemtical formu-
lation-of-the principle of radiation:. .

For the function P (x,7,2) we have an equation giving ¢ generalization
of green's formla [17:

r(x,y,z)--..” """.g;f -rd -")asmo)

where

'*Wx-é)‘+(3-n)‘+(z—;)‘, EET )

where the points P (&, N, ) move alopg the surface S and the external
direction of the normal i1c fOllowed.

On the basis of formula 1.10 1t ie easy to determine the asymptotic nature
of the dlaturbed motion of the fluid with larger values of R. For this purpose,
tet us introduce the spherical ceordinates of R, .. wi*h the center at the
origin of the coordinates, 1. e., .

xe K sin 0cos}b, 9 =Bsinfising,z=Feas @ (1.12)
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Then, in the case of ‘valuee of R and r ve have: ) ) ) ‘

r»R*JL-rO(_;%), | : . (1.13)

shere

\i\,:,._s:‘n (gcosyn-);smy)r;oo:ﬁ (1.18)

avda @ (¢) denotes terme of Yae order of smalless

Thus from formmla 1.10 we obtain the asymrtoticiformuia

~vR |
2= Q (580, }")i—i%-‘;ﬂ—f\o(éz). (1.15)

where
Q (w, @f)z SSeiVx 22 _ cyplsindleasin, g)gp_;yav
c on
, . ‘ C N (1016)
‘ +eoslmp)sin P+ cosln, f)resd)fdS)
| Utilizing formula 1.15, 1t is possidle to find the magnitude of the
energy of rediation carried away by the acoustical vaves per unit time. ‘-

This energy may be oalculated by examining the effect of preesure foroces
on & sphere having r'adms R with the center at the origin of the coordinates.

I
i
! We have
!
l

’ . . Al w . ' :
S ' Na 2§ R*si 0 ) e e
? dr.FaR' indds, S
M . . k . .

vhere p is the pressure exerted by the oscillstions of the body,

T e SN
. pe-e3f. (1.8)

1at us calculate the average amouni of ener; carried away by the accustical
vaves Guring the peried of oscillaticn 1"7‘ . To thie erd we note that

1€ we bave-two quantities varying in accordance with the harmonic law, . e., °
urylp AE qnd v e AT, the average valus of the proluct of the real parts of
‘hese quantitiee during the period 2 / K s rgprsgented by the formula

SURTUB I T T T W
'

; 3 - . agfe :
P  (uv) =g wodt=uZeuy = Re2Z  (1.19)
. S e P 4 , . 7 . 2. o
where tho line over s letter denctes the ususl trarsition toa complex com-
¥ Jugate quentity. ’ _ :
P : Pploying these valuss and proceeding to the linit vhers K—vec , ve
. obtain the following formuls for tho energy of radiation )
N ar » ,
kv o i o .20
Legke farfl@meyisingge. 0
? ? oo .
L ' K
SHRPNEER,

o
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The function Q(V;G,Y) 1a linearly related to the Complex amplitude
of the forward and angular’'velocities and to the amplitude of the velocity
of deformation, Therefore, the energy of the radietion is quadratic in form
with reference to these amplitundes.

1T, GERERALIZED CONNECTED MASSES AND COEYFICIENTS OF DEFORMATION

It has been established above that the problem of the determination of
the disturbed motion of a liquid resolves itself into a determination of the
function @ (x.y,2), vhich eatisfies the conditicns (1.7 and 1.9). In
view of the linearity of the problem, it is poesible ‘to odtain

) P"’i P ¥ (;0,,

ms)

?"él V"Qz“f"' .. _ {2.1)

v;pro the wectors @,, and $, bave grojections on the axss of the coordinates
y Pa and respectively. On the surface of the boly we
nave tl?é c&ditione P12 Lo:Fe

3 3 S a o |
Bd:i.n, 3_33.. ),xn,_a% =h.vymS (2.2)

on

In the vhole msss of fluid each of the funct:ons}?m satéefies the wave
eguations

x

and, finally, these funvtions satisfy the principls of radiaticn

MR(‘%%Q*.;’],%) =d . ' (2.4)

R~~~

From the gunaral analysis above it follows that with large values of R,
the asymptotic character of the function @ (x,5,2) fe determined by “he
formula:

P (x,g;2)e - @y (3 Y1 R o(_z_; .
m Y Qm ¢ iy _q""k"f e ) (£.5)

v'vheru . . . . ." .
. Qm (v, 8, y) .-jjg vy {gf‘m_ iyfm [sin Gees {u, g):.u }f-p-
, (] .
» rees (nn) .smr) o8 (n,;)cos 9]] <5, (2-6)
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‘The Pumotions Fhl{X,y, 2)e  Yue) %, 0are potentials of the velooity
of the disturbed motion of the fluid durimg oscillations of the solid body,
the components of the vslocities of which havs ome amplitude, and the function
“ $,0 ‘€ 4g the potential of the velocisits of the disturbed movement of the
' fluid during purely deformatary oscillations of the body.

The fumotions P, (z,y,2) are related to the form of the surface S and
the paramstor & . The eymmetry of the swrface S accounts for the correspond.
ing eymuetry in the etructure of the functions B, (x., 4, x )b without relation
to the parametsr ¥ . In fact, if the surfaca 8 ies symmeirical in relation
to the plane Oxz, 1t follows from their border conditions {2.2) that

39.:) 9% Ha=14375);

(an m \an w0 ): e
.w) =(3

(anmm ofm)m* (m=2.4,6), -8

vhere M and ¥’ are points on the surface S which are esymmetrical in relstion
to the plane Oxs. From these relations and from formula (1.10) it follows |
that for those parts of the plane Oxz inaide the liquid, the following
equations are correct:

.§.§L= 0 {s=135) Pn (1Y, 2)=0(m=2.46). (2.9)
At pointe symmetrical with reference to the plane Oxz, we Lave

ﬁ(x,y.z)ng(z,“y,z) (S=24,3,5), (2.10)

So R Fo (2, 1,2) = = F, (%, ~ 4, 2)(m=246).  (2.10)

If, in sddition, the surface S 1s symeetrical with referencs to tue
plane Oyz, we sball have:

(33‘» ® ‘Z’,Tﬂ,,,' # (g ("‘4_741)(5'%34’). (2.12)

9 ¥m = --I e — -

. vhere P aud P’ ft:'e' pointé au the surfase S which are eysmeirical with
. Lo referwice o tae plane Oyz.

i e o - S ) . . g e [ .
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Iat ve luvestigate the following complex coefficientss LR :

‘G'J =, ._..&,,\Jm-__’,fj iﬂ.dS(J,ms;Q .6)2.14)

It le obvious that these ooefficionta are related to the gecmetric pro-
perties of the eurface S and are functions of the parameter » . A mstrix
of the Gth order, composed of these coefficients, 1a symmetrical, 1.e.,

Gim= G, (2.15)

In fact, applying Gruen's formula to the region D, outside the swrface
S+ & vhere X is a ephere of radius R, we obtain i

“ (%422 - 9 2124 4<‘=.fﬁ( L= Pl .

But the right-band part of thie equation, due to equation 2.3, becomes °
zero.  On the other hand, on the casis of the asymptotic formulas 2.4 we
have: ' ’ -

| ‘,,;'j:ﬂ( - 7,22i) @& .o

Hence a.fter the paximm change R =3 co , we shall have
. 9 Pm - i\ S =0 ' {2.16)
[§(5 42 - prpiy<s=0 \
s B

A . . . : , ard this demonstrates the symetry of the matrix of the coefficients Gjm

: R If the plane Oxz 13 the plane of symmetry of the surface S, out cf the
e . N 21 constente dotermining the matrix of the aoefficients(; -, only 12 coe’-
N ficients will differ from zero, i.e., vaen J=1,3,5and ms 2,46, we bave
é'r ms( . If, in addition, the plane Oyzs is the plane of symmetry of the
o 208 S, “‘“en, excapt for the diagonal cnsfficients, only Gy5 and Ozh will
! a.iﬁ’or frow zero. Fipally, if the surface 8 hap *hres mutually perpendicular
*  planes of symotry, only the diageml coefficients G35 will differ from zero.

o le% us carry an the analysis of the hydrodynamic forces acting or en
i oncillat’ng hody. Uaing ¥ teo denote the primsipie wector of the hydredynamic
Torces acting vpon the body and M. for the principle moment of theee forces in
relation to the origin of the. coordinates, ve ehall have the usual formulae:

Fee({pnds, Me=({ prxn)ds, (2a)
s s '
v vkere
kt
Pz..eg ,_.._euke (i v+§,w+9°) (2.18)
> -7
* TR~
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“Putting the expression (2.18) into the formula (2417) ve obtain
FeFot+Fa, M=Ms+Md (2.19)

Bare ¥, and M, are bydrodymnic foroee caugsed by the purely defoxmtorg
oocil]ations of the body, and

'F=P,/p ﬂ‘gms M, ~pike j‘f‘% (an)dS (2.20)

and ¥ are hydrodynamic forcee and the moment oauead by the cacillations
d’ the bdoly, lnvestigated as a solld body, and

Fo=pite '"ff @ g.w)gg' dS.

My=pite ‘“‘/f(% \/'f'tgw)_%; dS.

Teploying the sxpression {2.14) for the forces Fy and the moment ud,
wve find thats

zrw# t Anm (’"‘/2 w6) (2.2),

vhers s X, are projoctione of the principal veotor of the hydroéynamic
forces 4, a.nﬂ i)‘, I,, Zg are projections of the principle mcment M3 of these
forces. .

Thus, the hydrodymic forces pruduced by the oscillations of the s0lid
body are dividod into ipertial toroea-

-

d¢

and into dsmping Torces:

" - . e | e
Xm-. -—‘E Nom ,Un' (2.24)

N=t

In determining the law of motion of an cecillating body, thas coefficlents
Mpm of the inertial forces acting on the dody play the part of additicoal
mausen, of mowents of inertia, etc., and the gquuntities), ,, are eoeﬂ’lcientc
. of deformaticn. _
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Therefore, the Soefﬁcients /,40 m of inertial forces my be called ' L _‘ '
connected masses, this being a géneralization of the existing cencept of S

©  compected masses for en infinite and incemjwressible fiuid. As stated above,
~ ~ the coefficients ipand),, are related to the geametric properties of the
btody and are functiohs of the paramster V , more precisely, of L,/A , Where
A:3%{v 18 the length of the radisted scoustical waves and L is the characteriatic
linear dimension of the body. .
In the limited case vhen y=() , i.0., when there ars very long radiatsd
vaves()\ 3> L), the functionsqm in the vicinity of the body satiefy the
Ilaplace equation:

g a3 '
03;3_‘" + aa‘;’f’ +—--%"ay,.=0: | o (225)

and, consequently, the coeffirients Gymare real. B

In this case the limited value of the generalized émneo{od nASsas )Ajm
coincides with the values of the ocnnocted mzseee during the motion of the
body in the incompressible fluid. )

In other limited caees when y:oe, i.e., vhen the radiated waves ure very,
short (N L), the ecoustica:i radiatfon procesds acoording to the law of
geometrio acoustice. Each element of the surface S radiates a plane wave in :
vhich the velocity of the fluld equals merely the rormal rcapouent volocity . - S i
of the giver element. of the surface 8. ' . N

Proceeding from consideratioms of energy, let us express the coofficients
of deformation dy the emergy of radiation carried off by the waves in unit
time. lat E be the mechanical energy i.e., the kinetic and potential energy
62 the voluse of the liquid in the region D, included between the surfaces S
amd . Then, applying the theory of energy of thie volume and confining

ourseivee, for sluplification of the radietion, to cecillatione of a amolid
body, we have '

—}F:-—&«V-ﬂb-n—-:/\f - S (2.21)

* e

vhere N is the energy carried off by the waves over the surface of the aphere !
S during wmit time. :
The total energy E of the volume of liquid vinder examinztion during
oscillation 19 a yperiodic function of the time; therefore, the average value
5 i _ of the force dL/dt for the period of the oscillations is reduced to zerc.
.o Furtherwore, it is eaey to see that the work of the inertiu) forces during
. . the period of oacillation is equal to zero. Thuc ws obtain

. o :
'%: t anl”,,‘ *+ Z rnm Re (5 %)‘a'cp- {2.08)
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Eere the summation in the second sun extends to all valuee njim without
rocurrence. From equation 2.28 we find the formula for Agy at all values
of n and ms

rnm= é 6%’;;‘5“)(5-! ’ if nﬁm,andéc 2ifn= m), {2.29}

During oscillations of & eolld body the function ¢ (Y,&,3), responsible
for the disturbed motion of the fluld, may be expressed linearly by the function
QD ((n O)W) :

[ ‘
Q("'eﬂy)" Z Un Qn (vloblp)' (2.30)

Conseeduently, after substituting in (1.1’.’\0) we obtain

Py g T v
Do Bz Re (¥ {0n(6.0,)Qe0sin04® e

In particuiar, vﬁen ne m, We have:

).sz%?; S’dvngn(V,ﬁ,u)):l}' sn@d © ;2‘32), |

The whole statement given above refers to the, spatial problem of the
acoustical radiation of an oscillating bedy. In the case of the plane pro-
blem of the radiation of the bmindary 8 the prcblem resoives into the dster-
mination of the ﬁmct:lonQ(x,y)e,"tulanng the conditions:

—3—%: v (5) ons, | (2.33) - _‘

d&o "9 - - .
S +-§—,_+‘P (3] 0 sutside s

[im V-E (gg'i'.;ry):O(E"s;&-ry‘)-. e

00

The last of these conditions expr(cses mathematically that, at great
distances from the Mundary the radiated waves are converted into cylimdrical.
vaves. '

8 » R
.ps Sl ey

AP o Y

N
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v ‘I‘kj general ‘representation of the function {x,y) takes the following "= "
form [1: v

Q(X.y).—.—ﬁ_ S(Hem (yp)g?;.“é?"abﬁ ng)(\,,,\))dﬁa.as)

where[fo( ){ is Hankel‘s function of the second type, r is the distance
tetween point {x,y) and point (5 17) of the boundary s, i.e.,

re Vix— 8y +y—n)*> t2.50)

Employing the asymptotic represemtation of Bankel's funotion, we shall,
as previously, obtain for the function § (x,y) the asymptotic formula

Q(x.y)= (8 ";%) e—'(fE~'D7¢+O(R-%), (2.38)

vhere R and O are polar coordinates, and
Q9=
J\ *V(e""’so”ns'” 6) aq—lv«ﬂ_cosécosé‘)g)+5m0605(0.h)?2d5a (2.39).
S

Investiating tle pressure forces on a circumference having a largs radiue
R, and vith the cemter et the origin of tho cocrdinates, ve olbtain the follow...
ing formuia for the average magnitude of the energy of the radiation carried
avay by acoustical wvaves:

Nep zfs”’f 1Q°(v8)1*do. ‘  (e0)

It is-possidle quite anslogouvly to carry on an analysis of the division of
the hydrodynamic forces acting on the cscillating boundary s. Considerations
of energy lead to the following formula for coefficisuie of deformstion during
oscillationa of a solid boundary

. 7 »
)‘””"351; Qn (v0)Q°m(vB)de, . (2

. 4 Qm(Y 16)3 :
§ "’(ﬁwse-m sin e\{an - IVQnEps(n,ﬁ)cos o+

(2.42)

cos(ﬂﬂ)SN,Q_]}ds, .

-1 .

b2
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“and tﬁe_fuhctioﬁ's '(i,y)v {m"="1,2,3) tulfill-the conditions (2.3’4) and{2:35)
and the following ‘conditions on the boundary s:

-—-a—g-‘- = & Q" =
sh cos (n,x);ﬁ———van cos(n.y), N
(2.13)

28 = xeon(ng)—y cos(nx)

171, BSAMPIES

let us oxamine several examples of calculation for generalized comnected
magsas and coefficiente of deformation. - Let us first carry out an approximate
calcnlatior for coefficientsof deformation based on the application of the
snergy formulas (2.31 and 2.51). Exsmining the emall values of the parameter ¥,
ve may £ind the first terms of the diescciation of the function Qn (Y8 §?
acoording to the degrees of V . : :

let us take a symmsirical body with reference to the coordinate planes, '
oscillating progresaively with three degrees of freedom; them, from formulae .
{2.6), correct up to the-terms containing,/?, we obtain: R .

Q=ivsin 8 cosy(v+4al)

Q= iV Sin @ Sin (v =320,

Q=7 V cos (9(\/4- 9 Y,
vhere V is the volume of the body, and (o), (0) sndja 27 (0) are
valusn of thee'genemnzed coanected m::eélwhen ),;5206 : #.5

According to formula 2.32 ve find:

PK-V/sl— Ann(0) 1 rao; o
Monam ‘\/"' o ( (n=/,2,3) B (372_)

Here the curved mark (~) over the letter denotes a valve of given
magnitude at cmall values of the parameter » . :
‘Amlogme formuiss hold- true in the rotary oscillations of a body.

In the particular tase of the arbitrary configuration of a diek during ite
rotary oscillation around the axes % and y, we have: :

On (u,@»iy) =

~{ Vcos e‘/;/‘e i B("ws,’#*’yyw)()"n*_ﬂ,.)dsﬁaﬁf), (3.3)

- 12 -

-
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where f ’i “ig ‘the value of the functions 'Qri on ‘thé ‘upper side of. the-disk,~
ale,.“ 18 the value of these functicne on the lower side of the disk. Re-
taining in formula 3.3 only the terms containing,) > , ve find:

Qa = = ¥7sinBcoso slnw_"_%e_(_@) Q= v”sin@cos Ocos 225,

o

o OH - ‘ .
xm=_gg$);,";,{o) (n=45) . (3.4)

Ap an application of formuia ©.41 let us examine & plane lamina of
‘Ypfinite span effecting verticsl and rotary oscillations. Proceeding &e in

the previous examples, for the Functions and ve obtain:
’ a B )

@ =i veos 6;:2:(@ Q_; -« = y>cas>QM33 (0)
: : Ve
Employing the well-known expression for connscted maasec of a" plané:
Mg (0) = TFPG")/‘) 30 = %—P‘“J‘

. wo £ind that:

Maazf pTUVIAt N, =2 o V4 a® o (3.5)

‘Lot us now examine some examples of exact calculation for gereralized
cormected masses and coefficients of deformation during acoustioal radiation’ .
of oncillating bodies in a compressidle liquid. '

‘Ao a firet exsuple, Jet us investigats the ecoustical radiation produved

by a glove of redius R during ite vertical ceciliiation. The function ’j’b(x,y,z)
corresponding to the oscillaticns of the globe takes the form:

l= 3 IVR ' . ‘o ‘ .
%=~ mrme (1Y) 90, 6o

where r is the distance between the potat P (x,y,z) and the center of the
glove and O 1w the angle tetwscn the direction of radius r and the axis Or.

According to formuls 2,14 we have:

}A_ﬁik '—"_'/’4:[4’3@(”’2')45; '
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and, conretvently, we find the expresaions M, (3)) and )\ (\)) represented

L in Pigure 1:

. V)= Y 4+2Y =R
V)= pu(0) 22T,

= ;ﬁ%ﬁ; (» (0)=§WPR5'>V =£mpR¥Y’RY) o

In a2 11ke manner 1t 18 possible to £ind the exact value of the connected
mase and of the coefficient of deformation during oscillations of a cylinder
1n the direction of axis Oy. For the function § (x,y), responaible for the
ogoillations of the cylindsr, we £ind that:

32 Hol d(y‘ ) (x=vK),
V. A R*

and, according to formula 2.1%, ve obtain the expressione for A ) and‘lg(\?),
represented in Figure 21 )

v) = A 'o U (J, =2 Jo + N, m.-x/vo
#O) = O T (N )

A= ),__ N(t/ ~xdb )~ J;(M"x/\/o
T (f,— xJe }*+ (/v,-x_/va =

(p(o):PTT R* ¥ = _....Pn"R x> o= VR)

(3.9) -

Hera J, (x) ie Wessel's function and N, (x) ls Ne.menn's function.

ol . ‘
& O T
u 1 !
e
0§ .
o 1 = e
J 2 J 4 £ R

Figure 1. The Comnected Mase and the Coefficient of Deformation During
Oscillatione of a Globe

If the wave functions of fLame and Mathieu and the function of a parabo’ic .

cylinder are employed, 1t 1s possidble to investigate several more general prob-
lems, for examplo, thJ problem of acouvstical radiation arieing during the

osciilation of an ellipeoid, an elliptic or parsholic cylinder.

- 1.
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Pigure é.. The Connected Maes and the Coefficient of Deformation of a Cylinder
Ap an application of the abdove-mentioned functions let us examine the
eimnlest example of aconstical radiation produced by & plane lamina of
infinite span. In this cade the funotion (x,3), responeidble for the

; . vertical and rotary ocscillations of the pa, ja determined accordirg to
g the Pormulas:

Q (LY)= YV q,(xy)+2 000y, - 6o

vhere V and {2 are the couplax emplitudes of tha corresponding vertical amd o - i ‘f
angular velocity and the functions Q‘ and Q’_fulﬁll the vave squation and : S -
the border conditions on the plane.

ég!a 80»; > - . .1 S : “
Sy ‘) Sy X when y O,ixl<=a ‘(3 1) | n

Introducing the #11iptical coordinates 7L+'L¥=OCh &+ il)), we can represent
the vave equation in these coordinates in tho ‘

_;Q._.-'. 617" (ch"g-cos *n)@= O (3:12)

The border conditiome (3.11) in the ooordimtea§ and 7, vill take the form:

28 . gsin q,gg";{qasin 2n when£=0 (3.13)

og

Fram conelderations of symmetry it also folluwe that

& = 8~ 0 when y=c, | 2l>a(n=0 1 1) (3.8)

st us represen’ thz furotions Q emdQ in terms or dlesociation in mer fes
acoording to Nathieu and Bnnkel'e functions (2):

-15 -
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. ﬂﬁ & 20t =Can ¢ (g)ch_”;‘(b)) |

e

9"22 AanSey,(£) Sean(y).

Bere S€an41 ( ) avdSe an{ M) are tiue periofic odd functions of Mathieu vith
the following normalization

se *(p)drsw,

1,..., )and $e ( ) are the correspo:iaing Hamkel ~ Msthieuv's functions
which fulfil candition 2.,5), and constants ¢ 300G ap BTE the coefficients
of disgoojation, which are to be determined.

It 1s easy to see that the 418800 jations {3.15), fulfill condition (3.14),
By employing the orthogonal Mathleu function and comditions {3.13), we obtain

- the following expreaaaona for the coefficientas l-,‘ vt and “an H

._s__.._mjunnqse {,,)d,,- & w)B(-?-h"'l)

220 2PN
(3.16)
Y]

Oy F e \ Sin 20 3@ (n) d oy =
" Inde, (03 STl R

-w

=7.S¢, — B(.Zn/l Se! (0)... (“5"*E(£!

5-

vhere B and By are the first coefficients cf dissociation in the Fourtar
sories omapmding to Mathieu’ s function Se, (; ) amd Je, (n)
(Ayns's designatior) f3].

For the connscted maseos and coefficients of deformation we have the
foramuiass
- -— [
Pt L- Pa,jl b4 3in '749,/.4 =y lzg-alp P, 51030dn(3.17)
-% .

-
on the basis of vhich ve find that:

}('-D Rr-—'ﬂ" ar ’-"""(0) B (2, n-—l’)
P ‘Ses.nﬂ(é’)

nmy

_-16-
P .
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B st N Wy
Soevned Yy

a ‘-—E Sesn(0) B™ (2..)1) .
Tl it8) wit) * (3.19)

ne

The coefi’icients B and By decrease very rapidly with an increase in
. the number n; cusoqueml:ly, to oalonlate %, and) . 1t is possidle to
take a small numbher of terms in the Mssooiations (3. 18) and (3.19),
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